设为首页收藏本站

弧论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 3788|回复: 0
打印 上一主题 下一主题

2017年,量子计算机正在向我们走来

[复制链接]

5905

主题

6600

帖子

7160

积分

坛主

Rank: 10Rank: 10Rank: 10

积分
7160
跳转到指定楼层
楼主
发表于 2017-1-30 05:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
2017年,量子计算机正在向我们走来

2017-01-11
战略前沿技术

来源:观察者网(ID:guanchacn),作者:徐令予 观察者网专栏作者 加州大学洛杉矶分校物理系研究员

量子计算机被戏称为“二十年后的技术”已经有许多年了,年复一年,这顶帽子始终也摘不下来。2017的新年钟声刚过,量子计算机的命运似乎出现了转机。
信息产业的巨头谷歌和微软最近礼聘了不少量子计算机行业中的先驱者,并为今年的工作设定了挑战性的目标。他们的雄心壮志也表现在工作重心从纯科学研究开始向工程开发转移,而且这种转型也广泛地发生于众多的创业公司和学术研究中心。
马里兰大学帕克分校的物理学家克里斯托弗·门罗(Christopher Monroe)说:“人们真的开始动手做东西,”他说,“我从来没有见过这样的事情。它不再只是实验室的学术研究项目了。”
谷歌从2014年起一直致力于利用超导量子电路实现量子计算方法。它希望在今年或不久之后,它们的量子计算能力可以超越最强大的“经典”超级计算机,企图一举夺得超算领域的皇冠。
去年6月谷歌和它的合作者加州大学圣塔巴巴拉分校物理系在《自然》杂志发表的那篇论文为即将发起的攻坚战吹响了冲锋号[1]。他们的竞争对手——微软也当仁不让,把赌注押在一个有趣但未经证实的概念——拓扑量子计算,希望在今年对该技术实施第一次示范。
从事量子计算的一些创业公司也不甘落后。门罗计划(Monroe plans)今年开始满世界诚聘英才。
超导量子电路的开拓者之一,耶鲁大学物理学家Robert Schoelkopf,和IBM出来的应用物理学家Chad Rigetti(他曾在加州伯克利创建 Rigetti Computing 公司)合作,他们期望尽速突破关键技术为量子计算机研发矗立重要的里程碑。
大学的实验室正在力争上游。
“事实证明我们拥有必需的所有组件和应有的功能,”Schoelkopf说,他继续在耶鲁大学领导一个参与这场竞赛的团队。为了让相关组件可以协同工作,仍有大量的物理实验需要完成,但主要的挑战现在是工程问题。
迄今为止具有最多量子比特位(20个qubits)的量子计算机正在由位于奥地利因斯布鲁克大学的Rainer Blatt领导的一个实验室中进行测试。
这里所说的量子比特qubits与现在普通计算机中的比特的概念是相似的,它们都是承载信息的基本单元。
事实上,具有10位以下量子比特的小型量子计算机早己成功运行,但是它们没有多少应用价值。许多实际问题的求解需要成百上千位的量子比特,这是量子计算机研发进程中最大的障碍。
因为量子比特的载体表现出“叠加”、“纠缠”等量子行为是有条件的,它们必须处于量子世界的环境中。
通俗地说,这些量子比特的载体(例如光子、电子等)只有处于孤独安静的状态才会表现出来超凡脱俗的量子行为。当成百上千的量子比特的载体集中在一起,它们立刻退化为宏观世界中的一个普通俗客,量子比特变成了只有“0”或“1”两个状态的普通计算机中的比特。
在增加量子比特位的同时,又能维持这些量子比特的载体的量子行为是量子计算机研制的关键,量子计算机最近的重大进展就与此有关。
目前解决方案是量子计算机的模块化。科学家先制成小于10位量子比特的量子计算机模块,然后用特殊的方法把这些模块联系起来。这种联接的方式只是让模块与模块中相邻的两个量子比特发生联系,然后通过它们让模块与模块传递信息。
这就保证了每个模块的独立性,每个模块是一只小型的量子计算机。但这些模块又是有机结合在一起的,构成了一个有许多位量子比特的可以有实用价值的大型量子计算机。
构建量子计算机模块的方案现在主要有三种。
最简单的方法是用单原子状态作为量子比特,下图显示的就是由5个原子组成的量子计算机模块,模块之间用光子作联接。

                               
登录/注册后可看大图
第二种方法是用超导线路中的电磁振荡作为量子比特,下图显示的就是由4位量子比特的超导线路量子计算机模块,模块之间也是用光子作媒介。谷歌的量子计算机用的就是超导线路方案。

                               
登录/注册后可看大图
第三种方法是用固体中电子自旋作为量子比特(下图)。这种量子计算机模块的一个优点是可以在室温下工作。

                               
登录/注册后可看大图
最近量子计算机赛场中杀出的一匹黑马——芯片巨头英特尔公司用的就是第三种方案。2015年英特尔公司与荷兰的一家研究机构合作,动用5千万美元资金,上个月传出了鼓舞人心的好消息。他们在超纯硅片上构建了多位的量子比特模块。
如上所述,量子计算机需要具有数千或上百万的量子比特位方能有广泛的实用价值。负责英特尔量子计算机硬件项目的总监吉姆·克拉克(Jim Clarke)认为,采用硅晶格的量子比特位有可能更快地实现这一目标。
他说:“在晶片上能够集成数十亿晶体管的专业技术和精密设备应该有助于完善和扩展硅量子比特位。”
不少人看好英特尔的研发项目,它在量子计算机的硬件开发上优势十分明显,英特尔公司的介入将会大大加速量子计算机的研发进度。
英特尔公司是经典电子计算机的中央处理器芯片的主要供应商,它又为什么要去研制完全不同的计算机,这不会砸了他自己的饭碗?英特尔在量子计算机研发上的努力说明了一个问题,量子计算机不是用来取代经典电子计算机的。
在可以预见的将来,量子计算机不可能替代人们桌上的电脑和口袋里的手机,它更不是用来玩网络游戏和发微信的。
量子计算机实际上是用来处理一些经典电子计算机根本无法解决的问题。人们都以为今天的超级电脑每秒种可以做千亿次以上的数值运算,所以这世上再复杂的问题应该都可以用电子计算机解决,大不了多花一些时间或者制造更快一点的电子计算机而已。
实际上这是一个天大的误会。
例如质因数分解:一台每秒能做一万亿次运算的电子计算机分解一个300位的正整数需要15万年,而分解一个5000位的数字需要50亿年!在未来相当长的一段时期中,即使电子计算机的速度有二至三位数的增长,它们对于解决质因数分解等问题仍然不会有什么实质性的帮助。
由此可知,对某些类型问题,没有计算机算法的突破,仅靠计算速度的加快是完全没有出路的。
半个多世纪以来,电子计算机从电子管、晶体管、集成电路一路走来,运行速度和存储容量等指标有了飞速的进步,但是它对信息处理的基本原理没有改变,因而计算的算法也难有根本上的突破[2]。
换言之,这几十年计算技术上的进步主要靠的是运行速度的提高和运行成本的降低,对于一些老大难问题仍然是束手无策。
而量子计算机的切入点就是提供一套与电子计算机完全不同的对信息的表达和处理的基本方法,从而为引入全新的算法提供了可能。量子计算机是通过执行特殊的算法去解决计算领域中一些特定的老大难问题的,可以认为它就是一类专用型计算机。
一定要明白:量子计算机不是用量子代替电子,从而提高运行速度;它也不是为了计算机进一步的小型化和微型化;在相当长时期中,它也不可能成为通用型计算机。量子通信实质上是用来作对称密钥分配的,同样,量子计算机主要是执行特殊算法的专用信息处理设备。
量子计算机成败的关键在于:
1)制备一定数量的具有量子物理特性的信息承载单元——量子比特,并让它们有机地结合起来成为可存储和可操作的量子处理器。
2)利用量子处理器的特殊性,设计聪明巧妙的算法,解决一些特殊的计算难题。为此需要量子工程物理学家、算法专家和硬件工程师等多方面学者专家通力协作。
除了不同专业层面的合作外,更需要有不同社会机构之间的交流与合作。美国在这点上做得比较好,在量子计算机的研制攻关中,他们已经形成了由大学与国家实验室、大型垄断性企业和创业型小公司组成的三驾马车。
这三驾马车中的每匹马都在发挥其各自的特长但又协作配合,而且在不同的路段和不同的时期,由不同的马扛起中辕的重任。
我觉得当前一些大型垄断性企业已经走到了前台,这也是量子计算机正在逐步成为现实的一个重要标志。
像谷歌、微软和英特尔通过对市场的垄断获取高额利润,他们对一些前瞻性高科技项目的投入真的不差钱,而且企业内部高科技人才和精密仪器设备都是现成的,不用也是白不用。
这几年他们全力以赴一定是嗅出了猎物的气味,想来收获的日子不会太远了。资本对于这些事物的敏感度和判断力常常使人佩服。
反观追赶型工业大国,在高科技竞争的节骨眼上有时候就差那临门一脚,缺少垄断性企业的加入就是重要原因之一。
中国不缺大型企业,但是这些企业并不掌握必杀技,他们多数只是赚些血汗钱,缺乏垄断性高利润收入。中国的大型企业在开创性高科技研发上缺少大规模的投入,非不愿也、乃不能也。一分钱都能逼死英雄汉,更何况动辙上亿美元的风险投入,钱从哪里来是个大问题。

                               
登录/注册后可看大图
中国科学院阿里巴巴量子计算实验室:plug光路用于囚禁原子
美国这些跨国企业通过垄断性高额利润来贴补高科技研发开支,又依靠研发成果进一步稳固和强化其垄断性地位,企业己经进入良性循环。后起的追赶型企业没有国家的组织和扶助实在很少有翻身机会的。
中国在量子通信方面做得很好,在量子计算机研发领域也需要国家有前瞻性的产业政策出台,切莫坐失这个千年难逢的机会。
量子计算机正在悄悄向我们走来,2017将是关键性的一年。现在的问题已经不是怀疑量子计算机能不能做成,而应该是关注如何构建大型量子计算机和如何使用它们。
我们目前也许还不清楚量子计算机将如何改变这个世界,但是模块化量子计算机网络的出现很快会让世人惊叹。帷幕正在渐渐拉开,好戏就在前头,看厌了美剧、韩剧和日剧的朋友们,你们是有福之人。

                               
登录/注册后可看大图
量子计算的研究增长:蓝色表示年度研发经费(单位为百万欧元),灰色为发表的研究成果

                               
登录/注册后可看大图
量子计算的研究增长:蓝色为论文数量,灰色为专利数量
[1]Barends, R. et al. Nature http://dx.doi.org/10.1038/nature17658 (2016).
[2]最近20多年中,电子计算机结构原理上的变化主要是平行化和分布化,这也带来了算法上的一些变化和改进。但是必须看到平行化算法本身是有额外开销的,平行化带来的增益是有限度的。而且平行算法对不少问题是几乎无效的。同时有必要提一下,量子计算机也可能为平行算法提供全新的构架。


                               
登录/注册后可看大图
【Nature 重磅】2017 转折之年:
量子计算机将从实验室走进现实

                               
登录/注册后可看大图
本文由新智元(ID:AI_era)授权转载,来源:nature.com 等,作者:Davide Castelvecchi,译者:胡祥杰
【导读】学术顶刊 Nature 今日刊文,以《2017年将是量子计算机从实验室走进现实》为题,梳理过去一年量子计算机相关进展,并预计2017年该领域值得期待的突破。
量子计算长期以来都被认为是20年以后才会实现的技术。但是,2017可能是这领域改变其“仅限于研究“的印象的一年。
计算领域的巨头谷歌和微软最近聘请了大量的重要人物,并且为刚开始2017年设置了一些具有挑战性的目标。他们的野心反映了一个广泛的现象:量子计算正在从纯粹的科学转变到工程建造。初创企业和学术研究实验室中也遇到了类似的情况。
”人们是真的在建设一些东西“,马里兰大学物理学家Christopher Monroe说,”我从来没见到过这样的现象,它(量子计算)已经不仅仅是科学研究了。“Christopher 同时是初创企业IonQ的联合创始人,这家企业创建于2015年。
谷歌距离通用的量子计算机又前进了一步
谷歌在2014年开始研究基于超导超导的量子计算机。谷歌希望在今年,或者稍晚一些的时候,能够超越最强大的“传统”计算机所能做到的计算能力,这一里程碑式的成就被命名为量子霸业。谷歌的竞争对手——微软,把赌注压在了一个非常吸引人但是还未经验证的概念——拓扑量子计算上,并希望成为首个展示这一技术的公司。
量子计算初创企业也是一片火热的景象。 Monroe计划在2017年年初启动招聘。耶鲁大学的物理学家、初创企业Quantum Circuits  的联合创始人Robert Schoelkopf  以及IBM 应用物理学家、Rigetti 创始人 Chad Rigetti 说,他们很快会实现关键的技术里程碑突破。
学术实验室也处在类似的拐点。“我们已经对所需要的所有的组件和所有功能进行了演示“,Schoelkopf说。他现在还在耶鲁领导一个小组,开发量子计算机。虽然要让所有的组件共同工作,还需要进行一系列的物理实验,但是,现在最主要的挑战是在工程上。Schoelkopf 和其他的科学家都表达了相同的观点。目前最大量子位(20)的量子计算机,已经开始在学术机构的实验室中进行测试。比如,位于奥地利的因斯布鲁克大学中,由Rainer Blatt所领导的研究小组就在做这件事。
深入微软拓扑量子计算机

                               
登录/注册后可看大图

2016 年 10 月,微软研究院量子结构和计算组成员、数学家和计算机科学家 Alex Bocharov 向 Nature 介绍了微软“拓扑量子计算机”相关的研究及进展。
传统的量子计算机把信息转化成量子位进行编码,有两种状态:0或1。但是,组成量子计算机的”量子位“也可能会处于叠加(superpositions)的状态,也就是同时处于1 或者同时处于0。
这种叠加,加上量子位分享量子状态的能力,也就是通常所说的纠缠(Entanglement),能够让计算机立刻执行任何形式的计算。并且,计算的数字,从理论上说,是每一个增加的量子位的两倍,这会带来指数级的计算速度增长。
这种速度能让量子计算机执行任何具体的任务,比如在大型的数据库中进行搜索,或者对大型数字进行量子分解,这些在传统的速度较慢的计算机中可能是无法实现的。量子计算机也可以转变成一个研究工具,演示量子模拟,让化学家能够使用此前没有预料到的细节来理解反映,或者能让物理学设计出能够在室温下实现超导的材料。
”我跟学生说,2017年将会成为转折之年“。
关于如何建造量子位,现在有许多非常有说服力的建议。但是现在有两个主要的方法逐渐脱颖而出,这要归功于他们储存信息的能力和不断增长的持续时间,虽然它们的量子状态还是很容易受到外部条件的干扰,并且在量子逻辑门操作上还有困难。
其中一个方法是Schoelkopf 参与提倡的,得到谷歌、IBM、Rigetti和Quantum Circuits 的采用,包括在超导循坏中,把量子状态当成震荡波流进行编码。另一个方法是IonQ和一些主要的学术实验室在追求的,即,把量子位编码为单一的离子,离子处于真空聚集槽的电磁场中。
加利福尼亚大学的John Martinis 在2014年带领团队一起加入谷歌,他说,超导技术的成熟让他的团队可以对量子霸业设置一个大胆的目标。
John Martinis的团队计划使用一个“混乱的”(chaotic)量子算法来实现这一目标,这一算法的产出看起来像一个随机的输出。如果他们的算法在一个由相对较少的量子位组成的量子计算机上运行,一个传统的机器能预测最后的输出,但是,一旦量子机器的量子位接近50,即使是大的传统超级计算机也会难以保持速度,John Martinis的团队预测。
量子计算机首次实现高能物理计算模拟

                               
登录/注册后可看大图

2016 年 6 月,Nature 刊发的一篇论文,描述了奥地利因斯布鲁克大学的实验物理学家 Esteban Martinez 和他的同事通过模拟一项高能物理实验,证明了量子计算概念的可行性。具体说,这项物理实验将能量转化成物质,生成了一个粒子(电子)和它的反粒子(正电子)。
实验中,研究人员使用的原型量子计算机在真空环境下,把 4 个离子束缚在电磁场中排成一排,每个离子都编码了一个量子位。4 个离子中的每一个都代表着一个位置,分别对应着两个粒子和两个反粒子,离子的自旋方向表示对应的粒子或反粒子是否有在相应位置出现。研究人员利用激光束操控这些离子的自旋,由此 4 个量子位就组成了一个简单的原型量子计算机。
这一计算的结果没什么用,但是他们的尝试说明了,现在有一些任务是量子计算机无法攻克的。这是一个重要的心理暗示,会吸引更多的潜在消费者的注意力。Martinis说。“我想,这会是一个对未来有重要意义的实验。”
但是,Schoelkopf 并没有把量子霸业看成是一个”非常有趣或者有用的目标“,其中部分原因是由于它避开了纠错的挑战,也就是系统在外部环境对量子位轻微的扰动后,恢复其信息流动方向的能力,随着量子位数量的增加,这会变得越来越难。反之,Quantum Circuits 聚焦于从一开始就打造能纠错的机器。这要求在更多的量子位基础上进行开发,机器也能够运行更加复杂的算法。
Monroe 希望能尽快实现量子霸业,但这并不是IonQ的主要目标。这家初创企业的目标是建造拥有32或者64个量子位的计算机,相对超导电流的技术,其离子井的技术也会让其设计变得更加灵活,更加可扩展。他说。
同时,微软的拓扑量子计算依赖于物质间的刺激。通过量子位之间像辫子一般的纠缠进行信息的编码。储存在这些量子位中的信息对外部的干扰会有更强的抵抗力,同时也能让纠错变得更容易。
没有人能够创造出这种刺激所需的物质状态,更不用说拓扑量子比特。但是微软已经雇用到该领域雇用了四位领军人物,包括兰代尔夫特大学的 Leo Kouwenhoven,他创造出似乎是正确的刺激类型。Kouwenhoven 说:“我跟我的学生说,2017 年是转折之年。”他将在代尔夫特校区建一个微软实验室。
其他的研究者却更加谨慎。“对于未来,我不会在媒体上做什么预测,”美国国家标准技术局的Blatt. David Wineland说。他领导了一个研究离子井的团队。他拒绝做任何预测,他说:“我对长期的发展非常乐观,但是长期指多长,我不知道。”
谷歌通用量子计算机进展:在量子化学领域取得实质突破
2016 年6 月,位于加州圣芭芭拉的谷歌研究实验室、加州大学圣芭芭拉分校和西班牙巴斯克大学的研究人员在《自然》杂志上介绍了他们合作研发的量子计算机原型。
谷歌的原型产品结合了两种量子计算技术。其中一种技术使用针对特定问题、有着特殊排列的量子位去设计计算机数字电路,这类似于传统微处理器中的订制数字电路。
在研究中,谷歌的团队采用了 9 个固态量子位。这些量子位由十字形的铝制薄膜制成,宽度约为400微米。随后,这些量子位被固定在蓝宝石表面上。研究人员将这些铝制薄膜的温度降低至0.02开尔文(约 -273℃),使金属成为超导体,电阻完全消失。利用这些超导态的量子位,研究人员可以向其中编码信息。
相邻量子位的互动由“逻辑门”控制。逻辑门利用数字方式去操控量子位,使其进入某种状态,从而得出问题的解。在演示中,研究人员对量子位进行排列,使其模拟有着一定自旋态的磁性原子阵列。这样的问题已经在凝聚态物理中得到了充分研究。研究人员随后可以通过量子位去确定总势能最低的原子自旋态组合。
谷歌的设备目前基本上停留在原型产品阶段,但研究人员表示:凭借误差修正,其技术可以成为通用算法,拓展至任意的大型量子计算机;在未来几年中,超过40个量子位的设备将成为现实。

                               
登录/注册后可看大图
紧接着,在 2016 年 7 月,谷歌量子软件工程师 Ryan Babbush 在 Google Research 发表博文,介绍了谷歌量子计算研究的最新进展——谷歌与哈佛大学的 Aspuru-Guzik 团队以及来自劳伦斯伯克利国家实验室、加州大学圣塔芭芭拉分校、塔夫茨大学、伦敦大学学院众多研究机构的研究人员合作,进行了首个完全可扩展的分子量子变相模拟(计算)。
在这个实验里,研究人员采用了“可变量子本征求解(variational quantum eigensolver,VQE)这一方法,该方法可以理解为是神经网络的量子模拟。经典的神经网络是一张参数图,这是为了建立传统数据模型;而 VQE 这张参数图(例如量子线路),是为了建立量子数据模型(例如分子波函数)。
通过使用 VQE,研究人员对氢气分子H2 的能量全景图(energy landscape)进行了量子计算。他们将 VQE 的表现与另一种用于传统化学量子算法——相位估值算法(PEA)进行比较。使用 VQE 实验计算出的能量值表示为 H - H 键长度的函数,如下图所示。

                               
登录/注册后可看大图

可以看出,在实验中 VQE 能取得这么高的表现,是因为神经网络训练回路(training loop) 帮助建立实验最佳线路参数,表示存在系统控制误差的情况下的波函数。
这可以理解为神经网络的硬件实现有一个权重错误,例如,显示的权重只有实际权重的一半。因为神经网络的权重是通过一个闭环的训练程序确定的,可以弥补系统误差,该硬件神经网络能够承受这样的瑕疵。因此,可以期待 VQE 在不用进行量子纠错的情况下解决经典的棘手问题。
量子理论的出现使定性或描述性的化学模拟向定量或预测性化学模拟转变。即使面临许多理论和实验上的挑战,量子理论仍然给这个领域带来巨大的变革,今后的应用还会有更多更多。
全球首台可编程的量子计算机
2016年 8 月 4日出版的《自然》封面论文,介绍了美国马里兰大学量子信息和计算机科学联合研究所(JQI)的一款可编程小型量子计算机。这也是首个可编程、可以在软件调整设置的量子计算机。

                               
登录/注册后可看大图
计算体系结构:a. 软件到硬件操作层级;b. 硬件配置
这项研究是建立在几十年来捕捉并控制离子的工作基础上。研究人员采用标准的方法移动离子,但又引入了全新的控制和衡量方式,包括使用激光移动离子,以及专门开设了检测通道,检测离子的光学性质。
研究人员测试了量子计算机最常用于解决的 3 种问题。论文第一作者、JQI 博士生 Shantanu Debnath 表示,这台“原型机”能够灵活适用于解决多种不同的任务,而这一突破非常关键。
Debnath 表示,通过直接将任何一对量子比特连接起来,研究人员可以让量子计算机执行不同的算法。虽然目前只有 5 个量子比特,但 Debnath 认为他们已经具备知识,可以将原型机扩展。
量子化学是量子计算能够提供大幅度加速的一个有前途的领域。由于简化了预编程过程,该研究在技术上有不错的进步,能够更快计算出很多复杂的量子化学问题。



大道至简 万物于弧
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|Archiver|小黑屋|国际弧学研究会    

GMT-7, 2024-5-15 09:08 , Processed in 0.401290 second(s), 22 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表