设为首页收藏本站

弧论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 4405|回复: 4
打印 上一主题 下一主题

时空与物质、广义相对论与量子力学的完美结合

  [复制链接]

41

主题

133

帖子

133

积分

特邀会员

Rank: 8Rank: 8

积分
133
跳转到指定楼层
楼主
发表于 2017-10-16 20:51 来自手机 | 显示全部楼层 回帖奖励 |倒序浏览 |阅读模式
四个天文发现:GW170817(引力波),GRB170817A(伽玛暴)和SSS17a(千新星)以及确认它们的宿主星系NGC4993
加州理工学院 陈雁北
湖北第二师范学院 范锡龙
(排名不分先后,同等贡献,共同通讯)

2017年8月17日,12点41分20秒(UTC),也就是北京时间20点41分20秒,NASA的费米伽玛射线空间望远镜发出了一个GRB170817A的伽玛射线暴报警,这是一次到达时间在20点41分06秒的短伽玛射线暴。


绿色的轮廓是引力波探测对GW170817在天空中的定位(浅绿色的两个轮廓是LIGO的定位范围,而深绿色的轮廓是加入Virgo以后的定位范围),蓝色轮廓是伽马射线探测器对GRB170817A的定位。标有Swope的灰色插图是光学望远镜对SSS17a的定位,而标有DLT40的灰色插图是在事件前的对照,上面灰色图多出的小点是SSS17a,而两者都有的大黑点是NGC4993星系。

六分钟后,LIGO的实时数据分析程序也在Hanford观测站的数据中自动找到了可能对应于两个致密星体碰撞发出的引力波信号,引力波碰撞信号到达地球的时间是20点41分04秒,比伽马射线早约2秒。LIGO和Virgo团队的快速反应小组马上人工确认了信号具有高置信度,并且初步估计了信号在天空中的方位,与GRB170817A在误差范围内一致。非常幸运的是,刚上线不久的Virgo,虽然灵敏度尚赶不上LIGO,但是大大缩小了定位的误差。这个引力波事件被定名为GW170817。


1971年投入使用的Swope望远镜 (左)。该望远镜坐落于智利,是美国卡内基天文研究院的天文学家Henrietta Swope (1902-1980,右图) 捐资建造的。

很快,GRB70817A和GW170817 方位被发布给了早有准备的70多个天文学家团队。由于信号的位置正好在澳大利亚上空,而光学天文观测只能在夜晚进行,并且只能往天上看(但是引力波探测器则不受地球的遮挡),这就给了智利和南非的天文学家先机。结果,坐落在智利的Swope望远镜(一个1971年建造的,按照现在的标准不怎么起眼的1米口径望远镜)拔了头筹,率先在NGC4993星系附近发现了一个新出现的亮斑。这个光学瞬变过程,被定为SSSS17a。


NGC4993是德国天文学家Wilheml Hershel (1738-1822) 在1789年发现的。 该星系距离地球1亿3千万光年,方向上位于长蛇座。
在后续的几个星期里,天文学家们利用其他位于地面、空间和地下的天文观测站,在电磁波的各个波段 (从伽马射线、X光、紫外,红外,可见光,微波),以及利用中微子探测技术,对这个已经由三个独立运行的引力波观测站 (LIGO Hanford, LIGO Livingston和Virgo)、伽马射线,和可见光都探测到的天文事件进行了进一步详细的研究。
天文学家们认定,这是一次双中子星的碰撞事件。引力波GW170817的观测,让我们测量了两个中子星的质量。伽马射线暴GRB170817A,让我们认识到中子星碰撞后有物质被高速抛出;后续的紫外、可见和红外光学观测和不同谱段光强的分析,让我们初步确定发光来自于重元素的衰变,确立了SSS17a是一个千新星。X光和射电 (微波波段的无线电) 观测,让我们更好地了解了爆炸的能量,抛出物质的状况,以及爆炸周围的环境。
这样,天文学家们就初步确认了“短伽马射线暴”的物理起源,初步确认了中子星的存在并且了解了它的成分,而且对宇宙中重元素的起源,有了新的实验证据。通过对引力波强度的测量,我们独立测量了NGC4993这个星系和地球距离,对宇宙膨胀的速率,以及宇宙的年龄又多了一个独立的测量方法。通过对引力波和电磁波到达时间,我们对引力波的速度也有了新的测量。

41

主题

133

帖子

133

积分

特邀会员

Rank: 8Rank: 8

积分
133
沙发
 楼主| 发表于 2017-10-16 20:52 来自手机 | 显示全部楼层
2015年,人类首次捕捉到黑洞发出的引力波 。我们不但证实了引力波这种时空的涟漪可以在宇宙空间中产生、传播,并且和地球上的仪器发生作用,也开始近距离地观测黑洞周围高度扭曲变形的时空。前几次对黑洞的观测,让物理学家异常兴奋,而这次对双中子星碰撞的探测,真可以说是各个波段的天文学家们集体的盛宴。 二十世纪物理学的两大进展,是广义相对论和量子力学。如果说,测量到从黑洞发出的引力波是广义相对论的胜利,这次的观测也可以说是广义相对论和量子力学双剑合璧的胜利,并且让人类对宇宙的起源、演化和成分有了更深入的了解。 量子力学:原子、原子核 也许有人会说,中子星?而且还是一亿多光年以外的?这跟我有什么半毛钱关系吗? 说到钱,我们都会想到金子,这个元素周期表中最讨人喜欢的元素。从科学的角度,金是第79号元素,原子核外面有79个电子。金原子核有79个质子,但是可以有不同数目的中子,这些不同的版本,叫做“同位素”。其中,79个质子和118个中子的版本,即金197,是唯一稳定的同位素。 金不但化学性质稳定,而且在自然界中非常稀少。在人类社会里面,金子象征着尊贵。本来300美元的手表,如果换成金子做的外壳,就可以卖10000美元。粉色,这个原本有点儿暧昧的颜色,如果改叫“玫瑰金”,也突然就变得高大上了起来。这次发现的双中子星碰撞事件,可以让我们更好地了解宇宙中金子的起源。核天体物理学家认为,宇宙中的大部分金子,可能都是由这次观测到的这种碰撞所产生的! 在20世纪初,物理学家纠结着这样一系列问题:带负电的电子在原子核外面运动的时候,应该发出辐射。辐射以后释放了能量,不是正好可以掉到带正电的原子核上面,跟它“中和”吗? 要回答这个令人困扰的问题,首先需要引入量子力学的概念。在量子力学里面,电子并不是围绕原子核做圆周运动,而是以波的形式弥漫在原子核周围。电子的相对稳定的运动状态叫做“能级”,而电子在能级之间的“跃迁”会释放出光子。在所有的能级中,有一个能量最低的叫做“基态”。电子在基态的时候,也会和周围的电磁场有一定的作用,但是并不会发出光,也不会掉到能量更低的状态。 电子除了具有“波动性”,还是一种满足“泡利不相容原理”的“费米子”。不能有多于一个占据在同样的状态上。换句话说,与其说我有几个粒子,想把他们分别放置到不同的量子态上,不如说,我就有这么一些个允许的状态,在这些状态上要么有粒子,要么没有粒子。泡利不相容原理,就使得原子核外的电子只能从低能往高能排,依次占有这些能级。这就是元素周期表背后的物理。所谓的化学反应,主要是由原子核外的电子的运动决定的。 其次,就是以前我们所说的正负电荷中和。我们在日常生活中看到的所谓“中和”,其实都是电子的转移。带正电的所谓的“电荷”,其实是缺少电子。带负电的所谓的“电荷”,其实是有多余的电子。两者的中和,其实是电子的转移过程。 在粒子的层次上,带负电的电子,跟带正电的质子,并不能简单的“中和”。他们可以参与核反应,形成中子,并且释放一个中微子。这是一个所谓的弱相互作用过程。 在空间中自由运动的中子是不稳定的,它也会通过弱相互作用,衰变为一个质子,一个电子和一个反中微子,这叫做beta-衰变。 既然中子可以衰变,就意味着它不是能量最低的一个状态,所以在一般情况下,想让质子和电子“中和”,是需要外界提供能量的,于是,这就保证了原子的稳定性。 质子和中子之间的相互作用、相互转化、以及相互结合,决定了原子核的结构和变化。不同的原子核之间也会发生一系列的核反应,从一种元素变到另外一种元素。

41

主题

133

帖子

133

积分

特邀会员

Rank: 8Rank: 8

积分
133
板凳
 楼主| 发表于 2017-10-16 20:52 来自手机 | 显示全部楼层
2015年,人类首次捕捉到黑洞发出的引力波 。我们不但证实了引力波这种时空的涟漪可以在宇宙空间中产生、传播,并且和地球上的仪器发生作用,也开始近距离地观测黑洞周围高度扭曲变形的时空。前几次对黑洞的观测,让物理学家异常兴奋,而这次对双中子星碰撞的探测,真可以说是各个波段的天文学家们集体的盛宴。 二十世纪物理学的两大进展,是广义相对论和量子力学。如果说,测量到从黑洞发出的引力波是广义相对论的胜利,这次的观测也可以说是广义相对论和量子力学双剑合璧的胜利,并且让人类对宇宙的起源、演化和成分有了更深入的了解。 量子力学:原子、原子核 也许有人会说,中子星?而且还是一亿多光年以外的?这跟我有什么半毛钱关系吗? 说到钱,我们都会想到金子,这个元素周期表中最讨人喜欢的元素。从科学的角度,金是第79号元素,原子核外面有79个电子。金原子核有79个质子,但是可以有不同数目的中子,这些不同的版本,叫做“同位素”。其中,79个质子和118个中子的版本,即金197,是唯一稳定的同位素。 金不但化学性质稳定,而且在自然界中非常稀少。在人类社会里面,金子象征着尊贵。本来300美元的手表,如果换成金子做的外壳,就可以卖10000美元。粉色,这个原本有点儿暧昧的颜色,如果改叫“玫瑰金”,也突然就变得高大上了起来。这次发现的双中子星碰撞事件,可以让我们更好地了解宇宙中金子的起源。核天体物理学家认为,宇宙中的大部分金子,可能都是由这次观测到的这种碰撞所产生的! 在20世纪初,物理学家纠结着这样一系列问题:带负电的电子在原子核外面运动的时候,应该发出辐射。辐射以后释放了能量,不是正好可以掉到带正电的原子核上面,跟它“中和”吗? 要回答这个令人困扰的问题,首先需要引入量子力学的概念。在量子力学里面,电子并不是围绕原子核做圆周运动,而是以波的形式弥漫在原子核周围。电子的相对稳定的运动状态叫做“能级”,而电子在能级之间的“跃迁”会释放出光子。在所有的能级中,有一个能量最低的叫做“基态”。电子在基态的时候,也会和周围的电磁场有一定的作用,但是并不会发出光,也不会掉到能量更低的状态。 电子除了具有“波动性”,还是一种满足“泡利不相容原理”的“费米子”。不能有多于一个占据在同样的状态上。换句话说,与其说我有几个粒子,想把他们分别放置到不同的量子态上,不如说,我就有这么一些个允许的状态,在这些状态上要么有粒子,要么没有粒子。泡利不相容原理,就使得原子核外的电子只能从低能往高能排,依次占有这些能级。这就是元素周期表背后的物理。所谓的化学反应,主要是由原子核外的电子的运动决定的。 其次,就是以前我们所说的正负电荷中和。我们在日常生活中看到的所谓“中和”,其实都是电子的转移。带正电的所谓的“电荷”,其实是缺少电子。带负电的所谓的“电荷”,其实是有多余的电子。两者的中和,其实是电子的转移过程。 在粒子的层次上,带负电的电子,跟带正电的质子,并不能简单的“中和”。他们可以参与核反应,形成中子,并且释放一个中微子。这是一个所谓的弱相互作用过程。 在空间中自由运动的中子是不稳定的,它也会通过弱相互作用,衰变为一个质子,一个电子和一个反中微子,这叫做beta-衰变。 既然中子可以衰变,就意味着它不是能量最低的一个状态,所以在一般情况下,想让质子和电子“中和”,是需要外界提供能量的,于是,这就保证了原子的稳定性。 质子和中子之间的相互作用、相互转化、以及相互结合,决定了原子核的结构和变化。不同的原子核之间也会发生一系列的核反应,从一种元素变到另外一种元素。

点评

满纸荒唐言,一把辛酸泪。 都云作者痴,谁解其中味? ——曹雪芹  发表于 2017-10-16 23:20
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|Archiver|小黑屋|国际弧学研究会    

GMT-7, 2024-5-14 23:59 , Processed in 0.488443 second(s), 22 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表