吉尔·艾利:阿兰 ·巴迪欧,我用一个数学术语来称呼您,您就是法国知识界的一个奇点(singularité)。当然,那是您的政治事业, 2006年,在您出版了《萨科齐是一个什么名字?》(De quoi Sarkozy est-il le nom?)取得成功之后,您引起了普罗大众的关注。您是今天最后一个还在从事政治事业的知识分子,也是对自由民主制热情狂放的批评者,您也孜孜不倦地捍卫着共产主义的观念,并且您拒绝将它连同大写历史(Histoire)的洗澡水一起倒掉。
不过,您所撰写的著作也极为独特,尤其从哲学的角度来看的时候。在哲学已经退却为一个专业的时代里,这种退却消磨了哲学最初的雄心壮志,然而,您坚持不懈地通过建构一个体系来恢复形而上学,我们可以将这个体系描述为关于世界、关于存在的大综合。现在,您主要在《存在与事件》(L’être et l’événement)和《世界的逻辑》(Logiques des mondes)中所设定的哲学,在很大程度上建基在数学之上。在这个方面,您是极少数提出要严肃对待数学的当代哲学家之一,您不仅作为一名哲学家去谈论数学,而且也在日常生活基础上去践行数学。
于是,在学习大学数学的头两年里,我进一步地学习了当代数学。从 1956到 1958年,也就是我在巴黎高师的头两年。我将哲学上的重要发现[伊波利特(Hyppolite)、阿尔都塞、康吉莱姆(Canguilhem)在那个时期都是我的老师]与在巴黎一大的数学课程结合起来,并与巴黎高师数学系的学生进行了实质性的讨论。那时,或许在结构主义和 20世纪 60年代的氛围之下,许多形式学科也需要做出回应,我坚信数学与哲学有着某种紧密的辩证关系——至少是我所概括的数学和哲学,因为数学就是我所关注的焦点。结构首先是数学家们所关注的东西。著名的人类学家列维-施特劳斯在他的名著《亲属关系的基本结构》(Les Structures élémentaire de la parenté)一书——那个时期,我饱含激情地读完了这本书——的末尾,提到了数学家韦伊(Weil),认为可以用群代数理论来理解女性交换。于是在那个时期,我的哲学方法需要把握大量的概念架构。此外,由于数学的美,以及数学所带来的创造力,数学需要你成为一个自由地需要它的主体,而不是将它当作一个对立的学科。事实上,当你在解决数学问题的时候,发现一个解——也就是精神创造性的自由——并不是某种盲目的瞎转悠,而是在整体连贯性的指引和证明规则的要求下,如其所是地按照路径的方向走下去。你实现你寻求解的欲望,并不是通过反对理性的法则,而是同时归功于这些法则的禁令和帮助。于是,这就是我开始思考的东西,首先是与拉康的合作:欲望和法则并不是对立的,而是辩证统一的。最后,数学以一种独特的方式将直观和证明结合起来,而这也是哲学必须尽其所能做的事情。
即便是在数学和哲学的鸿沟扩大的今天,在我之后二三十年里崛起了新一代哲学家,同时有极少数数学家[特里斯坦·加西亚(Tristan Garcia)、甘丹·梅亚苏(Quentin Meillassoux)、帕特里斯·曼尼格里耶(Partrice Maniglier)等人],他们重新发现了形而上学,这是非常朝气蓬勃的一代人。他们中一些人已经掌握了当代数学中一些非常重要的领域,并不会将数学还原为某种语言学实证主义,或者纯粹的科学史。我认为在这方面尤其突出的有夏尔·阿伦尼( Charles Alunni)、热内·居塔尔( René Guitart)、伊夫·安德烈( Yves André),以及最近的埃里·杜林( Elie During)和大卫·拉布安( David Rabouin)。显然,我不太记得新崛起的一代人中许多其他有天赋者的名字——或者说我不了解他们,我希望是这种情况。